Quadratics and exponents and logs...oh my!

(Actually, the first part is just a reminder about completing the square. But I said" "quadratics" in the title because then I could make the Wizard of Oz joke. It wouldn't work the same with "completing the square." But moving on!)

Completing the square: the idea with completing the square is that every single quadratic $A x^{2}+B x+C$ is a perfect square plus some constant. That is:

$$
A x^{2}+B x+C=a(x+b)^{2}+c
$$

Completing the square is all about finding those a, b, and c for the particular quadratic you are given. How do we find them? Here's the process that never fails:

- Expand $a(x+b)^{2}+c$
- Match coefficients on both sides of the equation
- Solve for a, b, and c

Algebraically, this means:

$$
\begin{aligned}
& A x^{2}+B x+C=a\left(x^{2}+2 b x+b^{2}\right)+c \\
& A x^{2}+B x+C=a x^{2}+2 a b x+a b^{2}+c
\end{aligned} \Longleftrightarrow \quad \begin{aligned}
& A=a \\
& B=2 a b \\
& C=a b^{2}+c
\end{aligned}
$$

Completing the square can be useful in sketching quadratic functions, determining when $A x^{2}+$ $B x+C=0$, and certain integration problems we will see in Math 20.

Exponent laws: Important facts to remember about exponents in the case where a and b are real numbers.

$$
\begin{array}{rrrl}
x^{a} x^{b} & =x^{a+b} & \left(x^{a}\right)^{b}=x^{a b}=\left(x^{b}\right)^{a} & \frac{x^{a}}{x^{b}}=x^{a-b} \\
(x y)^{a}=x^{a} y^{a} & \left(\frac{x}{y}\right)^{a}=\frac{x^{a}}{y^{a}} & x^{-a}=\frac{1}{x^{a}}
\end{array}
$$

It's also important to remember that $x^{0}=1$ for any finite number x and $x^{1}=x$.
In the case where the exponent is $\frac{1}{n}$ for some positive integer n, we get the idea of taking a root. That is

$$
x^{1 / n}=\sqrt[n]{x}
$$

From our general exponent laws above, we get the following laws about these roots:

$$
\sqrt[n]{x y}=\sqrt[n]{x} \sqrt[n]{y} \quad x^{m / n}=\sqrt[n]{x^{m}}=(\sqrt[n]{x})^{m} \quad \sqrt[n]{\frac{x}{y}}=\frac{\sqrt[n]{x}}{\sqrt[n]{y}}
$$

Logarithms: the logarithm base a is the inverse of exponentiation. That is:

$$
\log _{a} x=y \Longleftrightarrow x=a^{y}
$$

The domain of a logarithm function is $(0, \infty)$ and the range is $\mathbb{R}=(-\infty, \infty)$. Working with the fact that logarithm inverts exponentiation and the exponent laws above, we have the following laws about logarithms:

$$
\log _{a}(x y)=\log _{a} x+\log _{a} y \quad \log _{a}\left(x^{b}\right)=b \log _{a} x \quad \log _{a}\left(\frac{x}{y}\right)=\log _{a} x-\log _{a} y
$$

The most common base for log that we will see in this course is e, which gives us the natural logarithm. It's so special, it gets its own notation: we write $\ln (x)$ to mean $\log _{e} x$.

CAUTION: common math mistakes

$$
\begin{array}{rlr}
(x+y)^{a} \neq x^{a}+y^{a} & \text { all of these are } & \frac{1}{a+b} \neq \frac{1}{a}+\frac{1}{b} \\
& \text { NOT EQUALS } & \text { signs }
\end{array} \sqrt[n]{x+y} \neq \sqrt[n]{x}+\sqrt[n]{y}
$$

